
	
  

 
 
 
 
 
 
 

EFFECTS OF A SIX-WEEK WATERMELON SUPPLEMENTATION ON INSULIN 
RESISTANCE AND FOOD INTAKE SIGNALING IN FREE-LIVING, OVERWEIGHT, 

POST-MENOPAUSAL WOMEN 
 
 
 
 
 
 

A Thesis 
by 

THOMAS JACOB JURRISSEN 
 
 
 
 
 

  
Submitted to the Graduate School 
at Appalachian State University 

in partial fulfillment of the requirements for the degree of 
MASTER OF SCIENCE 

 
 
 
 
 
 
 

 
 

May 2015 
Department of Health and Exercise Science 

 
 
 
 
 

  



	
  

 
 

EFFECTS OF A SIX-WEEK WATERMELON SUPPLEMENTATION ON INSULIN 
RESISTANCE AND FOOD INTAKE SIGNALING IN FREE-LIVING, OVERWEIGHT, 

POST-MENOPAUSAL WOMEN 
 
 
 

 
A Thesis 

by 
THOMAS JACOB JURRISSEN 

May 2015 
 
 
 
 
 

APPROVED BY:  
  
 
        
Jennifer J. Zwetsloot, Ph.D. 
Chairperson, Thesis Committee 
 
 
        
Kevin A. Zwetsloot, Ph.D. 
Member, Thesis Committee 
 
 
        
R. Andrew Shanely, Ph.D. 
Member, Thesis Committee 
 
 
        
N. Travis Triplett, Ph.D. 
Chairperson, Department of Health and Exercise Science 
 
 
        
Max C. Poole, Ph.D. 
Dean, Cratis D. Williams School of Graduate Studies 
  



	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright by Thomas Jacob Jurrissen 2015 
All Rights Reserved 

 



iv 
	
  

	
  

Abstract 
 

EFFECTS OF A SIX-WEEK WATERMELON SUPPLEMENTATION ON INSULIN 
RESISTANCE AND FOOD INTAKE SIGNALING IN FREE-LIVING, OVERWEIGHT, 

POST-MENOPAUSAL WOMEN 
 

Thomas Jacob Jurrissen 
B.S., Appalachian State University 
M.S., Appalachian State University 

 
 

Chairperson: Jennifer J. Zwetsloot, Ph. D. 
 

Obesity has been associated with hormonal disruption involving food intake and 

utilization, and post-menopausal women have a higher propensity to be overweight. 

PURPOSE:  Investigate the effects of six-weeks of watermelon supplementation on insulin 

resistance and food intake signaling in free-living, overweight, post-menopausal women. 

METHODS: Subjects (60.1±6.8 years old and 59.5±5.2 years old, control and watermelon, 

respectively throughout) were overweight (82.5±14.5 kg and 84.2±17.1 kg, respectively) and 

were randomly assigned to either the watermelon or control treatment groups.  The 

watermelon group consumed 710 mL of watermelon puree per day for six weeks. No 

supplement was provided to the control group, i.e., the control group served as a time control. 

Both groups were asked to maintain their lifestyle and to not intentionally lose body mass. 

Fasting blood was collected pre- and post-six-week supplementation period. RESULTS: 

Watermelon supplementation increased L-arginine (p<0.05), but did not change glucose, 

insulin, or Homeostatic model assessment of insulin resistance (p>0.05). The hunger and 
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satiety peptides also did not change as a result of watermelon supplementation: Ghrelin, 

leptin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1, or peptide YY 

(p>0.05).  The control group, however, showed increased levels of PYY (p<0.05).  There 

was also a main effect of time for leptin, insulin, and GLP-1 (p<0.05). CONCLUSIONS:  

Six-weeks of watermelon supplementation did not impact insulin resistance or food intake 

signaling in free-living, overweight, post-menopausal women.  The community-based design 

of this study may account for the variability observed within the control group. 
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Chapter 1:  Introduction 
 

Menopause is considered the permanent end of menstruation; however, aging and the 

decrease in estrogen levels associated with menopause may also result in altered metabolism 

and adiposity.  Menopause is also associated with an increase in the prevalence of obesity.  

Post-menopausal women over 60 years of age have an obesity rate of 73%, as compared to 

65% for women between 40 and 59 years of age (Lizcano & Guzman, 2014).  Estrogen has 

multiple effects in the body, including regulation of food intake, meal size, body weight, and 

distribution of fat deposits, in addition to the regulation of secondary sex characteristics and 

fertility (Butera, 2010).   

Peptides associated with hunger and satiety have been reported to change with age 

and adiposity.  Peptide YY (PYY) increases with age (Cahill et al., 2014), while, ghrelin and 

leptin decrease with age (Chedraui et al., 2014; Klok, Jakobsdottir, & Drent, 2007; Ostlund, 

Yang, Klein, & Gingerich, 1996).  However, obese individuals have been reported to have 

decreased basal levels of PYY and increased leptin levels when compared to lean individuals 

(Batterham et al., 2003; Deibert et al., 2007).  While not all of these changes would 

theoretically result in increased food intake, regulation of food intake is often complicated by 

changes in sensitivity to these peptides and their receptor content.  More research is required 

to understand the effect of hunger and satiety peptides in obese, post-menopausal women.    
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In addition to increased overall obesity, post-menopausal women  have decreased 

subcutaneous fat and increased abdominal fat compared to women of reproductive age 

(Lizcano & Guzman, 2014).  Increased central adiposity is correlated with an increased risk 

of insulin resistance, metabolic syndrome, and type 2 diabetes (Al-Safi & Polotsky, 2014; 

Lizcano & Guzman, 2014; Toth, Poehlman, Matthews, Tchernof, & MacCoss, 2001).  Post-

menopausal women have an increased incidence of insulin resistance and metabolic 

syndrome compared to their premenopausal counterparts (Al-Safi & Polotsky, 2014; 

Sivasinprasasn et al., 2015; Twito, Frankel, & Nabriski, 2015).  

Both obesity and insulin resistance are associated with chronic low-grade 

inflammation and oxidative stress (Paneni, Costantino, & Cosentino, 2015; Sivasinprasasn et 

al., 2015).  In this state, oxidation of tetrahydrobiopterin (BH4), a cofactor in the nitric oxide 

(NO) pathway, results in decreased of NO production (Katusic, 2001; Sansbury & Hill, 

2014).  NO can affect the regulation of food intake and insulin resistance (Abdul Razak & 

Saad; Cersosimo & DeFronzo, 2006; Jobgen et al., 2009; Morley, Alshaher, Farr, Flood, & 

Kumar, 1999; Sansbury & Hill, 2014; Wu et al., 2007).  However, the effect of NO is 

dependent on how and where it is produced.   

There are three nitric oxide synthase (NOS) isoforms that produce NO in the body.  

Endothelial NOS, eNOS, produces NO mostly in vascular endothelium for vasodilation; 

neuronal NOS, nNOS, is expressed mostly in skeletal muscle and neurons; and inducible 

NOS, iNOS, which has the highest capacity to produce NO, is expressed in many cell types 
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and is produced in response to inflammatory stimuli.  Increased iNOS is associated with 

increased insulin resistance, increased glucose output from the liver and increased 

inflammation (Sansbury & Hill, 2014).  In contrast, an increase in eNOS is associated with 

increased fat oxidation, suppressed gluconeogenesis, prevention of hyperinsulinemia, 

promotion of adipocyte browning, and increasing insulin and glucose delivery to skeletal 

muscle (Sansbury & Hill, 2014).  In an obese individual, there is an increase in iNOS content 

and a down-regulation of eNOS (Sansbury & Hill, 2014).  The changes in NOS expression 

and activity may be involved in inducing insulin resistance in obese individuals (Sansbury & 

Hill, 2014).  NO has also been reported to increase food intake.  Specifically, NO produced 

via nNOS decreases the effect of leptin in the hypothalamus (Calapai et al., 1998; Sansbury 

& Hill, 2014; Toutouzas, Riga, Stefanadi, & Stefanadis, 2008).  While the exact role of NO 

in insulin and hunger and satiety signaling is not fully understood, it has emerged as a key 

metabolic regulator and potential intervention target. 

Watermelon supplementation has been reported to stimulate the NO pathway and 

increase antioxidant capacity (Figueroa, Sanchez-Gonzalez, Perkins-Veazie, & Arjmandi, 

2011; Figueroa, Sanchez-Gonzalez, Wong, & Arjmandi, 2012; Figueroa, Wong, Hooshmand, 

& Sanchez-Gonzalez, 2013; Figueroa, Wong, & Kalfon, 2014; Mohammad, Mohamed, & 

Zakaria, 2014).  Watermelon contains large quantities of lycopene and beta-carotene 

(Mohammad, Mohamed, & Zakaria, 2014).  These carotenoids are effective free radical 

scavengers (Mohammad, Mohamed, & Zakaria, 2014), which could aid in the production of 

NO.  Free radicals can cause the uncoupling of tetrahydrobiopterin (BH4) and NOS, which 
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results in a decrease of the availability of NO (Holowatz, Thompson-Torgerson, & Kenney, 

2010; Katusic, 2001; Mohammad, Mohamed, & Zakaria, 2014; Roe & Ren, 2012; Sansbury 

& Hill, 2014).   

In addition, watermelon contains L-citrulline, which is the precursor of L-arginine in 

the NO pathway (Wu et al., 2007).  L-arginine, along with BH4, oxygen, and nicotinamide 

adenine dinucleotide phosphate (NADPH), are necessary for NO production via the NOS 

(Katusic, 2001; Wijnands, Castermans, Hommen, Meesters, & Poeze, 2015).  

Supplementation of L-arginine has been reported to improve body composition by increasing 

muscle mass, decreasing fat mass, and improving insulin sensitivity in obese and diabetic rats 

(Sansbury & Hill, 2014).  Therefore, I would expect watermelon, which is rich with L-

arginine, to stimulate similar improvements in insulin sensitivity.   

Watermelon also contains a significant amount of fructose.  Fructose uptake by the 

liver is non-insulin dependent and does not cause a significant increase in insulin (Lustig, 

2010).  For this reason, fructose rich foods are typically recommended as an alternative to 

other sugar-containing foods for populations with insulin resistance (Le & Tappy, 2006); 

however, consuming large quantities of fructose could also have negative effects on post-

menopausal health (Lustig, 2010).  Insulin is part of the post-prandial satiety signaling 

(Sobrino Crespo, Perianes Cachero, Puebla Jimenez, Barrios, & Arilla Ferreiro, 2014).  

Fructose containing foods do not stimulate insulin secretion, resulting in decreased satiety 

and, therefore, increased food consumption (Lizarbe et al., 2013).  This could have a negative 
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effect on body composition, and, therefore, insulin resistance (Le & Tappy, 2006; Lustig, 

2010).  In addition, fructose consumption drives de novo lipogenesis and the production of 

free fatty acids, which could also have negative effects on body composition and insulin 

resistance (Lustig, 2010).  Watermelon consumption has been reported to improve oxidative 

stress and inflammation (Mohammad, Mohamed, & Zakaria, 2014), which may help with 

NO bioavailability.  Watermelon could have a positive effect on insulin resistance by eNOS 

produced NO (Sansbury & Hill, 2014).  However, if NO is produced through iNOS, insulin 

resistance may be exacerbated (Sansbury & Hill, 2014).  Fructose consumption through 

watermelon could lead to decreased hepatic insulin sensitivity, increased free fatty acid 

production, and an overall decrease in insulin post-prandially (Stanhope et al., 2009).  

Therefore, fructose may have negative effects on hunger and satiety signals and body 

composition in post-menopausal, overweight women (Lustig, 2010). 

Watermelon could have either a positive or negative impact on insulin resistance, 

depending on whether eNOS or iNOS stimulated NO production in post-menopausal, 

overweight women.  However, based on previous research with diabetic rats (Wu et al., 

2007), I hypothesize that watermelon consumption will improve insulin resistance in 

overweight, post-menopausal women.  I also hypothesize fructose consumption through 

watermelon, would result in negative impacts on hunger and satiety signaling.  Additionally, 

I hypothesize L-arginine will increase after six-weeks of watermelon supplementation, with 

no change in L-citrulline.  



6 

The purpose of this project was to investigate the metabolic effects of six weeks of 

watermelon supplementation.  Our primary objective of this project was to investigate the 

effects of six weeks of watermelon supplementation on insulin resistance.  Our secondary 

objective was to investigate the effects of watermelon supplementation on hunger and satiety 

signaling.     
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Chapter 2:  Literature Review 

Watermelon 

Watermelon is a fruit that is rich in L-citrulline and L-arginine and has been 

investigated as a potential treatment of hypertension, oxidative damage, and metabolic 

syndrome (Collins et al., 2007; Figueroa et al., 2011; Figueroa et al., 2012; Figueroa et al., 

2013; Figueroa et al., 2014; Mohammad, Mohamed, Zakaria, Abdul Razak, & Saad, 2014; 

Wu et al., 2007).  L-citrulline is a precursor of L-arginine, which is utilized in the production 

of NO (Wu & Morris, 1998).  After ingestion, approximately 38% of L-arginine is 

catabolized by intestinal and liver tissue before entering the systemic circulation (Castillo et 

al., 1993).  L-citrulline catabolism is limited; thus, more enters portal circulation in adults 

(Collins et al., 2007).  Due to the limited degradation of L-citrulline, it is available for 

conversion to L-arginine, which can then be used to produce NO (Collins et al., 2007).  NO 

has been reported to improve insulin sensitivity and increase mitochondrial biogenesis when 

produced via eNOS (Jobgen et al., 2009; Sansbury & Hill, 2014); however, an increase in 

iNOS could have a negative effect on insulin sensitivity, and an increase in nNOS could 

negatively affect satiety signaling (Sansbury & Hill, 2014). 

 Watermelon also contains the free radical scavengers lycopene and beta-carotene 

(Perkins-Veazie, Collins, Pair, & Roberts, 2001).  Free radical scavengers are utilized in an 

antioxidant defense mechanism that maintains redox balance and may decrease free radical 

toxicity (Mohammad, Mohamed, Zakaria, et al., 2014).  Reactive oxygen species (ROS) are 

oxygen-containing molecules that have oxidative effects (Oyinloye, Adenowo, & Kappo, 
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2015; Powers, Nelson, & Hudson, 2011).  Free radical scavengers decrease ROS by donating 

an electron from one of multiple double bonds, which stabilizes the ROS.  When ROS 

exceed the cellular antioxidant capacity, oxidative stress occurs, which can lead to 

inflammatory diseases (Oyinloye et al., 2015).  Mohammad et al. showed that watermelon 

supplementation can decrease oxidative stress (Mohammad, Mohamed, Zakaria, et al., 2014). 

Watermelon also contains a variety of sugars, specifically sucrose, glucose, fructose 

and maltose.  Humans metabolize these carbohydrates by different mechanisms.  Glucose is 

utilized throughout the body, especially in the brain, skeletal muscle, and liver.  Fructose is 

only metabolized by the liver (Lustig, 2010).  Fructose is brought into the liver by non-

insulin dependent glucose transporters (Glut5) and is converted to fructose-1-phosphate 

through hydrolysis of adenosine triphosphate (ATP) (Lustig, 2010).  As ATP decreases, 

adenosine monophosphate (AMP) increases and  is then metabolized to uric acid and then 

urate (Taylor & Curhan, 2008); urate buildup in circulation inhibits eNOS (Lustig, 2010).  

Decreased eNOS can lead to insulin resistance (Sansbury & Hill, 2014).  Because fructose 

transport is non-insulin dependent, fructose-containing food do not stimulate insulin 

secretion (Stanhope et al., 2009). Insulin is part of the satiety signal (Lizarbe et al., 2013).  

Therefore, decreased insulin could result in decreased satiety and thus, increased food 

consumption.  In addition, high fructose ingestion results in to lower leptin levels compared 

to high glucose post-ingestion (Moran, 2009).  This could have a negative effect on body 

composition, and therefore, on insulin resistance (Le & Tappy, 2006; Lustig, 2010).   Excess 

fructose is the primary driver of de novo lipogenesis in the liver (Lustig, 2010).  Fructose 
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stimulates peroxisomal proliferator-activated receptor-γ coactivator-1β, a transcriptional 

coactivator of SREBP-1, which stimulates de novo lipogenesis (Nagai et al., 2009); thus, 

excess watermelon could negatively impact insulin sensitivity with increased circulating 

triglycerides that are produced due to increased fructose consumption. 

L-arginine and NO 

 L-arginine is an amino acid utilized in the production of NO throughout the body 

(Boger, 2014; Katusic, 2001).  NO is produced through nitric oxide synthase (NOS) enzymes 

of which there are three isozymes: endothelial NOS (eNOS), neuronal NOS (nNOS) and 

inducible NOS (iNOS).  Briefly, NOS combines L-arginine, BH4, oxygen and NADPH to 

form NO and L-citrulline (Katusic, 2001; Wijnands et al., 2015).  The biological effect of 

NO is dependent on how and where it is produced and will be discussed in relation to insulin 

resistance and intake signaling in detail below. 

About 60% of L-arginine is produced in the kidneys; however, almost every cell is 

capable of producing L-arginine by recycling L-citrulline via arginosuccinate synthase and 

arginosuccinate lyase (Wu & Morris, 1998).  Briefly, L-citrulline is converted to L-

argininosuccinate via arginiosuccinate synthase (ASS), which is then converted to L-arginine 

via argininosuccinate lyase (ASL) (Wu & Morris, 1998).  Despite the body’s ability to 

produce L-arginine, L-arginine supplementation has been reported to increase the production 

of NO.  This increase in L-arginine can be utilized by each NOS isoform; however, L-
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arginine supplementation has been reported to increase eNOS expression in rats, but 

additional human studies are needed (Boger, 2014). 

Post-menopausal Women 

Menopause is noted by the decrease of estrogen and the cessation of a menstruation 

cycle for 12 months (MayoClinic, 2015).  Menopause can occur around the age of 50 with 

the average age being 51 in the United States (MayoClinic, 2015).  In addition to 

reproductive changes, post-menopausal women are three times more likely to develop 

obesity and metabolic syndrome when compared to premenopausal women (Eshtiaghi, 

Esteghamati, & Nakhjavani, 2010; Lizcano & Guzman, 2014).   

Estrogen plays a role in distribution of fat, with post-menopausal women showing an 

increased level of  abdominal fat (Cervellati et al., 2009; Ley, Lees, & Stevenson, 1992) and 

a decreased levels of subcutaneous fat (Lizcano & Guzman, 2014).  Svendsen et al. reported 

no change in abdominal fat or total body fat in healthy premenopausal women but suggested 

the increase in total body and abdominal fat occurred during perimenopause and may 

continue to increase after the onset of menopause (Svendsen, Hassager, & Christiansen, 

1995).  Increased abdominal adiposity is associated with increased insulin resistance, 

metabolic syndrome, and type 2 diabetes (Lizcano & Guzman, 2014; Paneni et al., 2015; 

Sansbury & Hill, 2014; Sivasinprasasn et al., 2015).  Post-menopausal women have a higher 

prevalence of both insulin resistance and diabetes (Kim & Feldman, 2015; Sivasinprasasn et 

al., 2015; Twito et al., 2015).  In post-menopausal women, increased adiposity, free radicals, 
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and age may all contribute to the prevalence of increased insulin resistance, diabetes, and 

metabolic syndrome (Kim & Feldman, 2015; Sivasinprasasn et al., 2015; Twito et al., 2015).      

Changes in estrogen influence food intake with increased estrogen in proestrus 

leading to decreased food intake, while, ovariectomized rats experience increases in food 

intake and body weight gain (Butera, 2010).  Food intake and satiety signaling peptides can 

be affected by both age and adipose level (Cahill et al., 2014; Chedraui et al., 2014; Deibert 

et al., 2007; Klok et al., 2007).  Cahill et al. reported increases in satiety signaling PYY with 

age, and PYY is positively correlated with body fat, trunk fat, and waist circumference 

(Cahill et al., 2014).  This contradicts Batterham et al., who reported a negative correlation 

with PYY and BMI (Batterham et al., 2003).  Cahill et al. noted that post-menopausal women 

have higher PYY concentrations than premenopausal women, which may be the result of a 

combination of confounding variables such as medication, age, and smoking status (Cahill et 

al., 2014).  Ostlund et al. reported that with increasing age, the satiety peptide leptin levels 

decrease, but leptin increases with increased adiposity (Ostlund et al., 1996).  Deibert et al. 

compared premenopausal and post-menopausal women trying to lose weight.  The post-

menopausal women had more leptin compared to the premenopausal women (Deibert et al., 

2007).  When comparing pre-menopausal and post-menopausal women, body weights in both 

groups were similar; however, the post-menopausal group had more body fat (Deibert et al., 

2007).  These results would suggest leptin is more influenced by body composition than by 

age (Deibert et al., 2007; Klok et al., 2007).  Ghrelin, a hunger stimulating peptide, has been 
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reported to decrease with age (Klok et al., 2007).  If leptin increases while ghrelin decreases 

in post-menopausal women, this would decrease appetite, leading to less food consumption.   

Insulin Resistance 

 Insulin resistance (IR) is a condition in which normal levels of insulin do not illicit 

the normal biological response (Al-Jiffri, Al-Sharif, Abd El-Kader, & Ashmawy, 2013).  

Insulin, an anabolic hormone, is essential for glucose homeostasis, growth, and regulation of 

fat and protein metabolism (Saltiel & Kahn, 2001).  Insulin is secreted from the pancreas in 

response to a rise in blood glucose and stimulates an increase in glucose uptake in muscle 

and adipose tissue (Saltiel & Kahn, 2001).  Low levels of insulin resistance can persist for 

years with blood glucose at or near normal levels (Nichols, Hillier, & Brown, 2008).  Over 

time and with increased severity, insulin resistance may eventually progress to type 2 

diabetes (Shaw, Zimmet, McCarty, & de Courten, 2000).  Obesity and insulin resistance are 

associated with increased oxidative stress and inflammation.  This can lead to decreased NO 

availability. In a state of oxidative stress, the NO cofactor BH4 can be oxidized into BH2 via 

superoxide, resulting in uncoupling of the NOS dimer (Roe & Ren, 2012).  NO can also be 

oxidized by superoxide anion to produce perioxynitrite anion; thus, increased free radicals 

can decrease the availability of NO to its target tissues (Katusic, 2001).  Insulin resistance is 

commonly measured using the homeostatic model assessment of insulin resistance (HOMA-

IR).  Various models that test insulin resistance include euglycaemic clamp, Minimal Model 

(MinMod), continuous infusion of glucose with model assessment (CIGMA), and HOMA 

(Hermans, Levy, Morris, & Turner, 1999).  HOMA is a relatively inexpensive, simple model 
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that utilizes fasting blood glucose and insulin concentrations to estimate β-cell function 

(HOMA-%β) as well as insulin resistance (HOMA-IR) by using a mathematical formula 

(Hermans et al., 1999; Matthews et al., 1985; Song et al., 2007; Wallace, Levy, & Matthews, 

2004).    

NO and insulin resistance 

 As previously described, the biological effect of NO is NOS isozyme dependent.  

Overweight individuals have a decrease in eNOS expression due to an increase in tumor 

necrosis factor-α (TNFα), which decreases eNOS mRNA stability (Yoshizumi, Perrella, 

Burnett, & Lee, 1993).  Deletion of eNOS in mice has been reported to cause insulin 

resistance (Duplain et al., 2001). 

 It has been suggested that eNOS has several influences on insulin sensitivity 

(Sansbury & Hill, 2014).  Insulin activates eNOS, which produces NO dependent 

vasodilation, aiding in insulin delivery and utilization in various tissues (Wang, Wang, Aylor, 

& Barrett, 2013).  Intra- and extracellular eNOS produced NO, which inhibits protein-

tyrosine phosphate 1b (PTP1B), an inhibitor of intracellular insulin signaling, although the 

exact mechanism is unclear (Wang et al., 2013). 

Cells that produce an inflammatory response, like immune cells, have iNOS present 

and is upregulated in obesity (Sansbury & Hill, 2014).  Pro-inflammatory cytokines have 

been shown to increase iNOS and has been hypothesized to induce insulin resistance 

(Perreault & Marette, 2001).  Ropelle et al. have reported increased iNOS expression leads to 
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increased skeletal muscle insulin resistance (Ropelle et al., 2013).  Overexpression of iNOS 

in the liver has been reported to cause insulin resistance in mouse liver (Shinozaki et al., 

2011).  There is evidence that insulin resistance in type 2 diabetes is linked with iNOS 

dependent S-nitrosylation of early signaling molecules such as PKB/Akt, the insulin receptor 

β-subunit (IRβ), and insulin substrate receptor-1 (IRS-1) (Carvalho-Filho, Ueno, Carvalheira, 

Velloso, & Saad, 2006; Carvalho-Filho et al., 2005).  These key insulin signaling pathway 

regulators are disrupted with the increase in NO, which could ultimately become a 

contributing factor of insulin resistance (Carvalho-Filho et al., 2005; Ropelle et al., 2013). 

L-arginine supplementation has been reported to enhance NO production, but it is 

catabolized early in intestinal metabolism (Katusic, 2001; Wijnands et al., 2015; Wu & 

Morris, 1998).  L-citrulline is not metabolized as early and can be converted to arginine for 

NO production (Castillo et al., 1993; Wu & Morris, 1998).  If NO is produced through 

eNOS, insulin sensitivity may improve; however, if NO production through iNOS is 

enhanced, then insulin resistance may worsen (Sansbury & Hill, 2014).  Therefore, when 

supplementing with watermelon, the NOS isozyme utilized will dictate the effect on insulin 

resistance.   

Hunger and satiety signaling 

 The hypothalamus is the primary regulator of food and utilizes several hormones to 

control food selection and intake, ultimately effecting body weight (Adamska, Ostrowska, 

Gorska, & Kretowski, 2014).  Hormones produced in adipose tissue and the gastrointestinal 
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system are known to influence neural signals of hunger and satiety (Ezcurra, Reimann, 

Gribble, & Emery, 2013; Thomas & Schauer, 2010; Tolhurst et al., 2011; Troke, Tan, & 

Bloom, 2014).  From the gastrointestinal system, ghrelin stimulates increased food intake, 

while GLP-1 and peptide YY increase satiety (Ezcurra et al., 2013; Tolhurst et al., 2011; 

Troke et al., 2014).  Leptin, produced via adipocytes, also increases satiety, reducing food 

intake (Lizarbe et al., 2013).  GIP is produced in the gastrointestinal system, however, by 

itself does not have an effect on hunger or satiety directly, but does stimulate the secretion of 

insulin, leading to a potential satiety effect (Chiang, Ip, & Jin, 2012; Lizarbe et al., 2013).   

Ghrelin 

 Ghrelin is a hormone that is secreted mainly by the stomach, which stimulates 

appetite, and is highly dependent on the nutritional state (Klok et al., 2007).  Ghrelin has a 

diurnal component and is decreased with increasing age, BMI, glucose, and insulin levels 

(Klok et al., 2007; Soni, Conroy, Mackey, & Kuller, 2011).  Women have higher levels of 

ghrelin compared to men (Klok et al., 2007). 

 Ghrelin levels have been reported to be lower in obese individuals compared to their 

leaner counterparts (Tschop et al., 2001), and other studies have reported increased ghrelin 

levels with weight loss (Klok et al., 2007).  Ghrelin increases with discontinuation of 

hormone replacement therapy in post-menopausal women with metabolic syndrome 

(Chedraui et al., 2014; Soni et al., 2011).  This suggests that menopause may be a strong 

regulator of ghrelin secretion as compared to obesity in post-menopausal women. 
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GIP (total) 

Gastric inhibitory peptide (GIP) was described by its initial characteristic of 

inhibition of histamine-induced gastric acid (Gault, O'Harte, & Flatt, 2003).  GIP is 

considered an incretin hormone due to its augmentation of postprandial insulin secretion 

(Irwin & Flatt, 2013); thus, the name was changed to a more suitable alternative, “glucose-

dependent insulinotropic polypeptide” (Pederson & Brown, 1976).  GIP is secreted from the 

enteroendocrine K-cells of the duodenum in response to food intake (Rudovich, Kaiser, 

Engeli, Osterhoff, Gögebakan, et al., 2007) and is regulated largely by carbohydrates and fat 

(Irwin & Flatt, 2009).  GIP is triggered to be released by Na+-coupled glucose uptake 

mediated by the brush border sodium glucose cotransporter (SBLT1) (Ezcurra et al., 2013).  

GIP concentrations vary, depending on the size and composition of the meal and health status 

(Vilsboll, Krarup, Deacon, Madsbad, & Holst, 2001).  After entering circulation, GIP is 

degraded rapidly by the ubiquitous enzyme dipeptidyl peptidase 4 (DPP-4), producing 

GIP(3-42), which does not have the insulinotropic effect (Irwin & Flatt, 2013).  GIP and its 

metabolites are also cleared by the body via renal filtration (Irwin & Flatt, 2013).  GIP has 

been reported to stimulate proinsulin gene transcription and translation, beta cell growth, 

differentiation, proliferation and survival (Irwin & Flatt, 2009). 

GIP receptors are prevalent in the stomach, pancreas, and adipocytes (Irwin & Flatt, 

2009).  There is growing evidence to support GIP receptor-mediated effects that link 

consumption of high-fat diets and the development of obesity, insulin resistance and type 2 

diabetes (Irwin & Flatt, 2009).  Rudovich et al. have reported different gene expression in 
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various adipose tissues with decreased GIP receptor gene expression in subcutaneous fat and 

higher levels of GIP receptor genes in visceral fat (Rudovich, Kaiser, Engeli, Osterhoff, 

Gögebakan, et al., 2007).  The increased GIP receptor gene expression in visceral fat was 

positively correlated with fasting insulin, glucose, LDL concentrations and HOMA-IR 

(Rudovich, Kaiser, Engeli, Osterhoff, Gögebakan, et al., 2007); however, the decreased 

expression of GIP receptors in subcutaneous fat is associated with insulin resistance 

(Rudovich, Kaiser, Engeli, Osterhoff, Gögebakan, et al., 2007). 

GLP-1 (active) 

 Glucagon-like peptide-1 (GLP-1) is an incretin hormone with an ability to increase 

insulin secretion (Ezcurra et al., 2013).  GLP-1 is a hormone that is broken down from the 

prohormone proglucagon (Lee & Jun, 2014).  The GLP-1 hormone has two active forms, 

GLP-1 (7-37) and the major active form GLP-1 (7-36) (Lee & Jun, 2014).  The gut and brain 

process proglucagon to produce GLP-1 (Lee & Jun, 2014).  GLP-1 is released from L-cells in 

the small intestine and colon and α-cells in the pancreas and in the brain in response to food 

ingestion (Ezcurra et al., 2013; Lee & Jun, 2014).  GLP-1 is also secreted in response to both 

fats and protein, specifically L-glutamine; however, the amount of protein needed to optimize 

GLP-1 release is unclear (Ezcurra et al., 2013; Tolhurst et al., 2011).  GLP-1 is released in a 

biphasic pattern, with the first phase occurring 10-15 minutes after oral food ingestion and 

the second occurring 30-60 minutes after oral food ingestion (Lee & Jun, 2014).  The initial 

secretion of GLP-1 may be due to vagus nerve innervation rather than direct stimulation of 
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L-cells (Rocca & Brubaker, 1999).  Fasting concentrations of bioactive GLP-1 can increase 

as much as 3-fold, depending on the last meal consumed (Elliott et al., 1993).  

 GLP-1 has many effects on appetite and metabolism in the body, including delaying 

gastric emptying, inhibiting food intake, improving insulin sensitivity, stimulating insulin 

synthesis, and inhibiting glucagon secretion (Lee & Jun, 2014).  GLP-1 receptors are located 

throughout the body and include the central and peripheral nervous system, the GI tract, 

muscle, adipose tissue, pancreas, liver, bone, and the cardiovascular system (. Kim & Egan, 

2008).  In the central nervous system, GLP-1 decreases appetite and stimulates neural 

information to be conveyed to other target tissues, like the pancreas (. Kim & Egan, 2008; 

Zander, Madsbad, Madsen, & Holst, 2002).  In the GI tract, GLP-1 has been reported to 

inhibit gastric acid secretion, gastric emptying and motility (. Kim & Egan, 2008; Wettergren 

et al., 1993).  In the pancreas, GLP-1 has a central role in β-cell mass with increased 

proliferation with decreased β-cell apoptosis (. Kim & Egan, 2008).  

 GLP-1 is eliminated via hepatic and renal clearance and is cleaved via DPP-4, 

resulting in the short half-life of approximately 2 minutes (Ezcurra et al., 2013; Lee & Jun, 

2014).  GLP-1, unlike other gut hormones, does not seem to be affected by excess body fat 

(Troke et al., 2014).  

Leptin  

 Leptin is produced from white adipocytes and is released in proportion to the amount 

of body fat (Dalamaga et al., 2013; Park & Ahima, 2014).  Leptin has many signaling 
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pathways that affect, the brain, specifically the hypothalamus, and peripheral tissues like 

adipocytes and skeletal muscle (El-Haschimi, Pierroz, Hileman, Bjorbaek, & Flier, 2000; 

Moon et al., 2013; Park & Ahima, 2014).  Women have higher levels of leptin than men due 

to increased subcutaneous adipose tissue, which secretes leptin (Deibert et al., 2007; Leshan, 

Bjornholm, Munzberg, & Myers, 2006; Moon et al., 2013; Ostlund et al., 1996).  Post-

menopausal women have also been reported to have increased leptin compared to 

premenopausal women (Deibert et al., 2007).  Age, sex, and caloric restriction may alter 

leptin levels, but these are secondary regulators compared to increased adiposity (Ostlund et 

al., 1996).  Leptin levels are also increased via increases in insulin and pro-inflammatory 

cytokines (TNF-α and interleukin-1) (Ahima & Osei, 2004; Paz-Filho et al., 2012).     

 Leptin functions as a feedback mechanism that signals the brain to inhibit food intake 

and regulate body weight and energy homeostasis (Klok et al., 2007).  Leptin deficient mice 

and humans are severely obese and have endocrine alterations such as hyperglycemia and 

insulin resistance (Paz-Filho et al., 2012).  Obese individuals have significantly higher 

circulating leptin than their lean counterparts; however, the increased leptin does not 

suppress feeding or weight gain (Ahima & Osei, 2004) due to leptin resistance (Sainz, 

Barrenetxe, Moreno-Aliaga, & Martinez, 2015). 

 Leptin resistance is described as the diminished effect of leptin’s ability to suppress 

appetite and weight gain as well as to stimulate energy expenditure (Moon et al., 2013).  The 

mechanism for leptin resistance remains unclear, but several theories have been postulated, 
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which include impaired ability to cross the blood brain barrier, an inhibition of leptin 

signaling in the brain and decreased cellular downstream signaling response (El-Haschimi et 

al., 2000; Sainz et al., 2015).  Leptin resistance can lead to hyperphagia, impaired nutrient 

absorption, and impaired glucose and lipid metabolism (Moon et al., 2013; Sainz et al., 

2015).  Leptin resistance has been reported in rats fed a high-fructose diet (Sainz et al., 

2015).   

 Leptin and insulin have been suggested to have overlapping signaling pathways, and 

leptin has been reported to improve glucose tolerance when administered as a therapy in mice 

(Keung, Palaniyappan, & Lopaschuk, 2011).  Leptin administration has been reported, in 

vivo, to stimulate insulin’s inhibitory effect on hepatic glucose output while inhibiting 

insulin’s effect on glucokinase (Moon et al., 2013).  Leptin treatment has been reported to 

induce phosphorylation of Akt and glycogen synthase kinase 3 but not to the same degree as 

insulin (Szanto & Kahn, 2000).  In the liver, leptin antagonizes insulin, while in the muscle, 

leptin stimulates a non-IRS-1-associated PI3K, which mimics glucose transport (Moon et al., 

2013).  This suggests a complex signaling interaction between leptin and insulin that is tissue 

specific, with some interactions being proposed to be involved in the development of insulin 

resistance (Moon et al., 2013). 

PYY (total) 

Peptide YY (PYY) is a hormone that is secreted by the L cells in the distal small 

intestine (Troke et al., 2014).  While all macronutrients increase secretion of PYY, the 
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stimulus for the most potent release in obese humans is a high carbohydrate, low fat diet 

(Essah, Levy, Sistrun, Kelly, & Nestler, 2007).  PYY levels begin to rise within 15 minutes 

of food ingestion, which implies a neural or hormonal mechanism for its release (Gibbons et 

al., 2013).  PYY works to decrease gastric emptying, delaying the transition from the 

stomach to the intestine and to decrease ghrelin levels (Troke et al., 2014).  PYY levels peak 

around 60 minutes after food ingestion and remain elevated for up to six hours (Adrian et al., 

1985). 

Fasting levels of PYY are lower in obese individuals compared to lean individuals, 

and there is also a blunted response in obese individuals (Batterham et al., 2003; Hill, De 

Souza, Wagstaff, Sato, & Williams, 2012; Troke et al., 2014).  Infusion of PYY has been 

reported to inhibit appetite and food intake in both lean and obese individuals (Batterham et 

al., 2003).  It is uncertain whether low PYY leads to obesity or obesity leads to low PYY 

(Batterham et al., 2003).  

NO and Hunger/satiety signaling 

NO does not increase or decrease hunger or satiety peptides production or secretion.  

In the periphery GIP and GLP-1 are not dependent on NO for secretion, affecting gastric 

emptying, or the incretin response of elevating insulin (Gentilcore et al., 2005).   However, 

the central nervous system utilizes NO for some of the processes involved in regulation of 

feeding (Morley, Farr, Sell, Hileman, & Banks, 2011).  Specifically, NO affects the function 

of leptin and ghrelin (Farr, Banks, Kumar, & Morley, 2005; Morley et al., 2011).  In the 
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hypothalamus, ghrelin has been reported to increase NOS levels thus increasing NO, while 

leptin decreases NOS thus decreasing NO (Gaskin, Farr, Banks, Kumar, & Morley, 2003; 

Morley et al., 2011).  NO does not directly affect the activity of these signaling molecules but 

could be a limiting factor if the substrates required for the production of NO were deficient.  

Therefore, if watermelon supplementation changes the availability of L-arginine in the brain, 

food intake signaling in the CNS could be altered.  Also, as previously mentioned, fructose 

can have a negative impact on inflammation and oxidative stress, which can lead to the 

uncoupling of BH4 and NOS, resulting in a decrease in NO.  Fructose also can exacerbate 

insulin resistance in the liver, in skeletal muscle and decrease post-prandial insulin secretion 

(Stanhope et al., 2009). 

Lastly, both insulin and leptin utilize eNOS in their signaling pathways, but in 

opposition to the other (Mehebik-Mojaat, Ribiere, Niang, Forest, & Jaubert, 2009).  Leptin, 

when stimulating eNOS, inhibits IRS-1 via PKA, which inhibits insulin signaling (Mehebik-

Mojaat et al., 2009). When insulin stimulates eNOS, JAK2-P is inhibited via SHP-1 through 

the insulin receptor thus inhibiting leptin signaling (Mehebik-Mojaat et al., 2009).  This 

interference effect could be the link between obesity and insulin- and leptin-resistance 

(Joffin, Niang, Forest, & Jaubert, 2012).  Jobgen et al. have reported decreased leptin levels 

and improved glucose disposal in male rats with L-arginine supplementation (Jobgen et al., 

2009).  Jobgen et al. suggested improved glucose disposal was credited to improved insulin 

sensitivity and increase in muscle mass (Jobgen et al., 2009).   
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NO should have no effect on hunger and satiety signaling peptides, except insulin.  

The upregulation of insulin, however, could effect other hunger and satiety hormone 

concentrations and pathways.  Fructose may also impact the hunger and satiety signals, 

especially insulin.  Thus, fructose may negatively impact the hunger and satiety peptides.   

 Conclusion  

Women experience many changes with the onset of menopause, including changes in 

food intake and body composition.  With the increased prevalence in obesity and central 

adiposity in post-menopausal women, there is an increased risk of insulin resistance,  

metabolic syndrome, and type 2 diabetes (Lizcano & Guzman, 2014).  L-arginine has been 

reported to improve insulin resistance and metabolic syndrome through NO pathways 

(Sansbury & Hill, 2014; Wu et al., 2007).  Watermelon is high in L-citrulline, a precursor to 

L-arginine, which is a substrate for the NO pathway (Figueroa et al., 2011; Figueroa et al., 

2012; Figueroa et al., 2013; Figueroa et al., 2014; Wu et al., 2007); however, the effects of 

watermelon supplementation on insulin resistance and hunger satiety signaling are unknown.  

We predict there will be an improvement in insulin resistance with the production of NO 

through eNOS with watermelon supplementation.  We also predict hunger and satiety 

peptides will be negatively impacted due to fructose present in watermelon.  Additionally, we 

hypothesize L-arginine will increase after six-weeks of watermelon supplementation, with no 

change in L-citrulline.  Therefore, the purpose of this study is to investigate the effects of 

watermelon supplementation in post-menopausal, overweight women.  
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Chapter 3:  Methods 

Subjects 

 Sixty overweight (BMI >25), post-menopausal women, with ages of 50-75 were 

recruited.  After completing a voluntary informed consent form, subjects were required to 

complete a medical health questionnaire.  A medical health questionnaire was used to verify 

medical history and lifestyles of each subject and was compared to the exclusion criteria.  

Subjects were non-smokers with no overt diagnosed chronic medical conditions such as 

diabetes, cardiovascular disease, hypertension, cancer, or rheumatoid arthritis.  Subjects were 

excluded if they regularly consumed large quantities of L-citrulline/L-arginine rich foods or 

supplements.  Subjects were excluded if they took exogenous ovarian hormones, 

antihypertension drugs, or medications known to influence inflammation.  Subjects were also 

excluded if they were allergic to watermelon, attempting to lose body weight, or consumed 

weight-loss medications.  This study was approved by Appalachian State University’s 

Institutional Review Board (14-0092).   
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Experimental Design 

 

Figure 1. Schematic of study design.  Pre-intervention visit consisted of informed consent, 
orientation and questionnaires, collection of anthropometric data and a fasting blood draw.  
Subjects were randomized assigned into groups and provided watermelon (WM), if in the 
WM group.  Following six-week intervention subjects returned for their post study 
assessments. 
 

Upon arrival to lab for the pre-intervention visit, the subjects were asked to complete 

informed consent forms, orientation and questionnaires. The subject’s anthropometric data 

were collected, including height and weight and body fat percentage (Tanita Corporation, 

Tokyo, Japan, TanitaTBF-300A).  The subjects were randomly assigned into either the 

watermelon group or the control group.  A trained phlebotomist drew blood.  Blood was 

collected in serum separating tubes and EDTA tubes and processed accordingly.  The 
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watermelon group was given a six-week supply of watermelon puree.  Both groups were 

asked to limit L-arginine rich foods, such as red meat, peanuts, walnuts and tuna.  A dose of 

1.88g of L-citrulline and 0.39g of L-arginine (710ml of watermelon puree) was consumed 

each day.   

Watermelon supplement 

 Millionaire seedless sunripe watermelons (Falls Church, VA, USA) were utilized for 

a watermelon puree and provided via a pilot plant at the U.S. Department of Agriculture 

Citrus and Subtropical Products Laboratory (Winterhaven, FL, USA).  Watermelon was cold 

pressed pasteurized and analyzed for L-citrulline and L-arginine concentrations (Dr. 

Penelope Perkins-Veazie- Plants for Human Health Institute, North Carolina State 

University).  Watermelon puree was stored at -20oC before distribution to the subjects.  

Subjects were instructed to keep watermelon puree frozen until ready for consumption, at 

which time the puree should be thawed with running hot water over the bottle.  Each bottle of 

watermelon puree, 710mL, contains 2.27g of combined L-citrulline/L-arginine, specifically, 

1.88g of L-citrulline and 0.39g of L-arginine. 
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 Blood collection 

 
Figure 2. Schematic of blood collection and the types of tubes utilized for various samples. 

 

Blood samples were separated into the collection tubes listed above.  Protease 

inhibitors (serine protease inhibitor and DPPIV inhibitor) were added to the EDTA blood 

collection tubes.  Samples were mixed by inversion and then separated by centrifugation.  

The EDTA tubes were centrifuged at 1000 relative centrifuge force (rcf) for ten minutes at 

4oC.   Plasma from the EDTA tubes was aliquoted, flash frozen in liquid nitrogen, and stored 

at -80oC.  The serum separator tubes were centrifuged at 1000rcf at room temperature.  These 

tubes were transported at room temperature to Cannon Memorial Hospital and were analyzed 

for fasting blood glucose and insulin levels.  
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Metabolic assay 

Plasma aliquots for the metabolic panel assay were analyzed using a Milliplex human 

metabolic hormone magnet bead panel to test for active ghrelin, GIP, active GLP-1, insulin, 

leptin and total PYY (MILLIPLEX® Map Kit – Human Metabolic Hormone Magnetic Bead 

Panel; EMD Millipore, Billerica, MA).  Briefly, wells were washed with assay buffer.  A 

25µL volume of standards and controls were placed into the appropriate wells.  A 25µL 

volume of assay buffer was added to the sample wells, along with 25µL of the plasma 

samples.  A 25µL volume of matrix solution was added to the standards and controls.  The 

magnetic beads, one for each analyte of interest, were mixed.  The beads were pre-

conjugated with the necessary primary antibodies.  A 25µL volume of the mixed magnetic 

beads were added to each well.  The plates were then sealed and covered with aluminum foil 

to protect the beads from light.  The plates were agitated on a plate shaker at 4oC overnight, 

which allowed for analyte-bead binding.  After the overnight incubation, the plates were 

washed three times to remove all excess, non-specific analytes in solution.  The plate was 

placed on a strong handheld magnet for one minute to ensure the beads had settled to the 

bottom of the plate before decanting.  The plate was decanted with the magnet still beneath 

the plate to ensure no beads were lost.  Next, the plate was placed upright, removed from the 

magnet and 200µL of assay buffer was added to each well.  The plate was agitated for 30 

seconds on a plate shaker.  After agitation, the plate was placed on the magnet for one 

minute.  The assay buffer was decanted, and this process was repeated for a total of three 

washes.  A 50µL volume of detection antibodies were added to each well.  The plate was 
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sealed, covered with aluminum foil and agitated for one hour on the plate shaker at room 

temperature.  This allowed for equilibrium to be reached between the binding and unbinding 

secondary antibodies to the primary antibody-analyte complex.  After the incubation, 50µL 

of Streptavidin-Phycoerythrin, the detection molecule, was added to each well.  Streptavidin-

Phycoerythrin binds to the detection antibody.  The plates were sealed, covered with 

aluminum foil and agitated for 30 minutes at room temperature.  After the incubation, the 

plate was decanted and another wash cycle was performed.  A 100µL volume of wash buffer 

was added to all wells.  The plates were sealed, covered with aluminum foil and agitated on 

the plate shaker for 5 minutes to resuspend the beads.  The samples were analyzed using the 

MAGPIX® instrument and xPONENT® analysis software (Luminex, Austin, TX).  Briefly, a 

portion of the sample was removed from the well and ejected it into the analyzing chamber.  

A magnet was applied to form a monolayer of beads.  A red light emitting diode, LED, was 

used to illuminate the chamber.  The type of bead was determined based on color emitted in 

response to the red LED.  Following the illumination from the red LED, a green LED 

illuminated the chamber.  Based on the color the beads emitted from the green LED, the 

concentration of the analyte was determined.  

HOMA-IR 

 Serum blood tubes were sent to Cannon Memorial Hospital Laboratory to obtain 

fasting blood glucose and insulin levels.  Insulin was determined using an 

electrochemiluminescence immunoassay.  During the first incubation, samples were added to 
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a mixture of biotinylated monoclonal insulin-specific antibodies and a monoclonal insulin-

specific antibody labeled with ruthenium complex.  The second incubation was after the 

addition of the detector molecule streptavidin, which then bound to the complex.   

 Fasting blood glucose was determined via an enzymatic reference method, utilizing 

hexokinase and UV testing to determine concentrations.  Briefly, glucose is converted to 

glucose-6-phosphate when in the presence of ATP and hexokinase.    Glucose-6-phosphate 

and NADP+ is converted to gluconate-6-phosphate and NADPH+H+ via glucose-6-phosphate 

dehydrogenase.  The NAPDH is analyzed photometrically at 340nm.  NAPDH is directly 

proportional to the glucose concentration. 

 These values were used to calculate homeostatic model assessment-estimated insulin 

resistance, HOMA-IR.  HOMA-IR was calculated using the following formula: fasting 

insulin (µIU/ml) × fasting glucose (mg/dl)/405 (S. W. Lee, Jo, Kim, Kim, & You, 2015)  

Statistics 

 A 2x2 (treatment x time), repeated measures ANOVA was performed using SPSS 

(IBM Corp. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY) to determine if 

differences existed between groups.  If significance was found, the Fisher LSD post-hoc test 

was performed.  Significance was set at p≤0.05.  Effect size was determined only in results 

that showed a time-by-treatment interaction by Cohen’s D (Cohen, 1988).  Data are 

expressed as percent change ± SD, with the exception of subject characteristics, which are 

expressed as mean ± SD. 
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Chapter 4: Results 

Subject characteristics 

After analysis of blood glucose and insulin, six subjects with fasting blood glucose 

>125 were excluded because of the potential for undiagnosed diabetes (control, n=2, 

watermelon, n=4).  There were no significant differences between treatment groups for age 

or BMI.  However, there was a main effect of time to increase weight (% change=0.5±1.4%, 

p=0.048), and body fat percentage (% change=1.1±2.8%, p=0.007) at the end of the six-week 

period (Table 1).  

Table 1. Subject Characteristics 
 Pre-Study Post-Study  Time; interaction 

effects, P-Valuea 
Age    
 CT 60.1 ± 1.6  
WM  59.5 ± 1.0  
   
Mass (kg)   
CT 82.6 ± 3.3 82.7 ± 3.3 0.048; 0.297 
WM 84.2 ± 3.4 84.8 ± 3.4  
    
BMI (kg/m2)    
 CT 30.3 ± 1.4 30.4 ± 1.1 0.285; 0.351 
WM 29.9 ± 1.2   31.1 ± 0.92    
    
Body Fat %    
CT 42.6 ± 1.1 43.3 ± 1.2 0.007; 0.259 
WM  42.9 ± 0.95 43.2 ± 1.0  
Notes: All data are means ± SE. aThe first P-value represents the overall time effect; the 
second P-value represents the condition (control vs. watermelon) × time (2 time points) 
interaction effects. CT = Control, WM = Watermelon 
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Watermelon measurements 

 L-arginine significantly increased due to a time-by-treatment interaction in the 

watermelon group (% change=8.3 ± 11.4%, p=0.005) (Figure 3).  The effect size was small 

(d=0.349).  L-citrulline did not change (% change: CT=1.7 ± 16.2% vs. WM=1.8 ± 10.4%) 

(Figure 4). 

Glucose, Insulin and Insulin resistance 

 Fasting blood glucose did not change (% change: CT =-0.6 ± 5.4% vs. WM=0.3 ± 

6.8%) (Figure 5).  There was a main effect of time to increase insulin levels (% change= 13.0 

± 30.1%, p=0.05) (Figure 6).  HOMA-IR did not change significantly, but there was a trend 

toward a main effect of time (% change=25.2 ± 35.9%, p=0.071) (Figure 7).  

Hunger/satiety peptides 

 Ghrelin, the only hunger-stimulating hormone, did not change (% change: CT=21.8 ± 

49.2 % vs. WM=32.1 ± 103.8%) (Figure 8).  There was a significant main effect of time to 

increase leptin (% change=8.6 ± 21.9%, p=0.021) (Figure 9).  PYY increased via a time-by-

treatment interaction in the control group only (% change = 23 ± 32%, p=0.001) (Figure 10). 

The effect size was medium (d=0.532).  The incretin hormones GLP-1 and GIP varied in 

their response.  There was a main effect of time to increase GLP-1 (% change=169.8 ± 

531.0%, p=0.037) (Figure 11), while GIP did not significantly change (% change: CT=30.8 ± 

83.9% vs WM=26.2 ± 130.0%) (Figure 12).    

  



33 

Chapter 5: Discussion 
	
  

 Over the course of the six-week treatment period, there was an overall main effect of 

time, which led to changes in body characteristics, specifically, weight and body fat 

percentage, with mass increasing significantly less than 1% and body fat percentage 

increasing approximately 1%.  It is possible that the short duration of the study limited the 

impact on the changes observed.  Fructose has been reported to increase body weight, total 

fat and visceral fat in humans consuming fructose-sweetened beverages (Stanhope et al., 

2009), however, our treatment group did not increase their weight or body fat percentage 

independent of our control group.  Therefore watermelon supplementation did not affect 

body characteristics. 

 As hypothesized, watermelon consumption increased plasma L-arginine in the 

watermelon group.  Plasma L-citrulline, however, did not increase due to watermelon 

supplementation.  These results are supported by the findings of Collins et al. that measured 

an increase in L-arginine but not L-citrulline with watermelon consumption (Collins et al., 

2007).  This is due to L-citrulline being utilized in the synthesis of L-arginine in order to 

produce NO (Wu & Morris, 1998).    

 Despite being within normal blood glucose ranges, Nichols et al. reported individuals 

who have blood glucose levels of 90-94mg/dl are at almost at a 50% greater risk of 

developing diabetes, compared to blood glucose levels less than 85mg/dl (Nichols et al., 

2008).  Both the control and watermelon groups had an average blood glucose level of at 
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least 95mg/dl, indicating that the subject population is predisposed to insulin resistance and is 

at risk of being diagnosed with impaired glucose tolerance.  Fasting blood glucose levels did 

not change over time in either group.  This indicates that within the six-week watermelon 

supplementation period, the dosage used neither improved nor impaired blood glucose 

homeostasis.  Insulin levels less than 12µIU/mL are considered normal (Sinatra, 2004).  

Insulin increased as a result of time (p=0.05), increasing from 11µIU/mL to13µIU/mL.  

However, there was no difference due to treatment, suggesting that watermelon 

supplementation at the levels used neither improves nor makes insulin resistance worse 

within this population.  These results support those reported by Wu et al. Zucker diabetic 

fatty rats did not change insulin levels due to watermelon supplementation (Wu et al., 2007).  

Although there was a trend, HOMA-IR did not significantly increase over time in the current 

study.  This is consistent with the glucose findings. Our data suggest that while watermelon 

may not have improved insulin sensitivity, it also did not exacerbate insulin resistance.  If we 

had found decreases in HOMA-IR, they would indicate improvements in insulin sensitivity 

and improved glucose.  

 Other studies have investigated the effect of L-arginine supplementation on hunger 

and satiety signaling (Batterham et al., 2003; Breitman et al., 2011; Broglio et al., 2004; Flatt, 

Kwasowski, Howland, & Bailey, 1991; Geloneze et al., 2014; Kaminski et al., 2015; Martin 

et al., 2014; Prodam et al., 2012; N. N. Rudovich et al., 2005; Tan et al., 2011). However, 

this is the first study designed to investigate the effects of watermelon supplementation on 

hunger and satiety peptides.  Similar to other L-arginine supplementation studies in humans 
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(Breitman et al., 2011; Broglio et al., 2004; N. N. Rudovich et al., 2005), there was no 

change in ghrelin levels due to watermelon supplementation.   

 GIP did not change, which is similar to previous work.  Breitman et al. reported no 

change in GIP over the course of 2 or 8 weeks of amino acid supplementation, with 7g of L-

arginine as one of the components in their supplement (Breitman et al., 2011).  However, our 

results do not agree with Flatt et al., who found an increase in GIP in obese, hyperglycemic 

mice when measured within 120 minutes of amino acid supplementation (Flatt et al., 1991).   

GIP is secreted in response to food intake.  Therefore, it is possible that the time of the blood 

draw needs to be closer to time of consumption of watermelon in order to observe differences 

in GIP (Irwin & Flatt, 2009; Rudovich, Kaiser, Engeli, Osterhoff, Gogebakan, et al., 2007).   

 There was a main effect of time to increase GLP-1, but there was no effect of 

watermelon, which supports the findings of Breitman et al. that L-arginine supplementation 

did not change GLP-1 levels in humans (Breitman et al., 2011). The main effect of time may 

be due to changes in diet.  All subjects were instructed to avoid consumption of L-arginine 

rich foods, therefore, GLP-1 levels may have declined, since it is secreted in response to 

proteins.  Also, GLP-1 is released 10-15 and 30-60 minutes after oral ingestion of food in a 

biphasic pattern, therefore, levels may have returned to baseline by the time of the blood 

draw.  

 Leptin did not independently change in our watermelon treatment group, which 

contradicts previous studies that have reported increases in leptin due to amino acid 
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supplementation that contains L-arginine supplementation  (Breitman et al., 2011; Tan et al., 

2011). There was a main effect of time in leptin concentrations over the six weeks.  This 

could be a reflection of the increase in adipose tissue also observed. 

 PYY was reported to increase in the control group with a medium effect size 

compared to watermelon supplementation.  PYY has been reported to be secreted due to food 

intake, specifically carbohydrates and lipids (Thomas & Schauer, 2010).  This study was 

conducted in a community setting, so the increase in PYY could be due to dietary choices 

made within the control group.  

  Lack of dietary control could be considered a limitation of the study.  In a 

community setting study, food choices are not controlled.  The instruction was to limit L-

arginine consumption.  Changes in diet may have increased variability of the results.  If their 

new diet was composed of more carbohydrates, there may have been a need to increase 

insulin to maintain the blood glucose levels.  Requiring an increase in insulin could lead to an 

increase of incretin hormones, such as GLP-1, which occurred in both groups.   

 Our supplementation program required the watermelon treatment group to consume 

710mls of watermelon puree every day, but the subjects were allowed to decide on time of 

consumption and if they would consume it all at once or in smaller doses.  Therefore, the 

watermelon group could have consumed varying amounts of watermelon puree at different 

time points throughout the day.  As a result, some of the variables we measured could have 

peaked at different times based on the last time the watermelon was consumed.  Another 
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limitation is only collecting fasting blood draws.  Some of the hunger and satiety peptides 

have a relatively short half-life; therefore, by only taking fasting blood draws, we may not 

have observed the physiological changes as a result of watermelon supplementation. 

 In future studies, either standardizing the diet or not restricting L-arginine rich foods 

could be beneficial.  A standardized diet would offer stronger comparisons between groups, 

while a non-restricted diet would be the more applicable for a community-based 

methodology. Also, sample collection at various time points after the last consumption of 

watermelon might be useful for detecting changes in signaling molecules that degrade 

quickly.  The addition of a physiological stress, such as exercise, in addition to watermelon 

supplementation, could allow for determination of a potential benefit of watermelon.   

 In conclusion, watermelon supplementation did not significantly impact hunger and 

satiety signaling peptides in overweight, post-menopausal women.  Glucose, insulin and 

HOMA-IR were also not affected by watermelon supplementation.  Plasma L-arginine 

increased as a result of watermelon supplementation, thus watermelon could be utilized to 

supplement individuals with low L-arginine concentrations.  Therefore, if watermelon 

supplementation was utilized for therapeutic purposes, it would not result in an alteration of 

their insulin sensitivity or food intake signaling.  
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Figure 3. L-rginine change in the CT and WM groups (% change CT 0.1 ± 14.3% ( % change 
WM 8.3 ± 11.4%)). Time-by-treatment interaction, #p<0.05. 

Figure 4. L-citrulline change in the CT and WM groups (% change CT 1.7 ± 16.2%, % 
change WM 1.8 ± 10.4%). 
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Figure 5. Blood glucose change in the CT and WM groups (% change CT-0.6 ± 5.4% std, % 
change WM 0.26 ± 6.8%). 

Figure 6. Insulin change in the CT and WM groups (% change CT 16.8 ± 31.2%, % change 
WM 10.3 ± 29.0%). Main effect of time (13.0 ± 30.1%) *p<0.05. 
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Figure 7. HOMA-IR, homeostatic model assessment of insulin resistance change in the CT 
and WM groups (% change CT -4.9 ± 37.6%, % change WM -1.2 ± 34.6%).  

Figure 8. Ghrelin change in the CT and WM groups (% change CT 21.8 ± 49.2%, % change 
WM 32.1 ± 103.8%). 
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Figure 9. Leptin change in the CT and WM groups (% change CT 8.0 ± 18.2%, % change 
WM 9.1 ± 24.2%). Main effect of time (8.6 ± 21.9%), *p<0.05. 

Figure 10. PYY change in the CT and WM groups (% change CT 22.7 ± 32.0%, % change 
WM 12.7 ± 31.6%). Time-by-treatment interaction, #p<0.05. 
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 Figure 11. GLP-1change in the CT and WM groups (% change CT 146.3 ± 506.7%, % 
change WM 186.9 ± 547.4%). Main effect of time (169.8 ± 530.9%), *p<0.05 

Figure 12. GIP change in the CT and WM groups (% change CT 30.8 ± 83.9%, % change 
WM 26.2 ± 129.7%). 
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